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1. INTRODUCTION 

 

US Department of Energy’s Carbon Capture Simulation for Industry Impact (CCSI2) is a 

collaboration among national laboratories, universities, and industrial organizations with the 

goal of accelerating technology development, demonstration, and deployment using 

computational tools and models [1]. One of the process models that has been developed under 

of the auspices of CCSI is a model designed to serve as a definitive reference for benchmarking 

the performance of solvent-based carbon dioxide (CO2) capture systems. For developing the 

model, various submodels (e.g. physical properties, mass transfer, hydraulic models) have been 

developed independently, with uncertainty quantification, and combined into an overall 

process model. The project described in this work seeks to incorporate this existing model into 

a framework in which the initial (prior) estimated uncertainty is used to design a test plan for 

a monoethanolamine (MEA) solvent campaign, and this plan is continuously updated as new 

experimental data are used to alter the model uncertainty estimate. 

 

A previous test campaign (Summer 2014) was conducted for the MEA solvent system and used 

as a basis for validating the process model developed as a part of CCSI. This campaign was 

designed using a space-filling approach with consideration to the manipulated variables of 

interest (flow rates of solvent, flue gas, and reboiler steam). In addition to these manipulated 

variables, variation in the number of absorber beds and presence of intercooling is considered. 

The output space, however, was not considered in the selection of the test cases. As a result, a 

large amount of data was collected for absorber operation at very high CO2 capture percentage 

(>99%), and this clustering could have been avoided if a preliminary model had been 

considered for planning the test run. 

 

The major goal of this project is to leverage the existing model of the National Carbon Capture 

Center (NCCC) pilot plant for an MEA system, which will be referred to as the CCSI model, 

for use in designing a test campaign with an optimal set of runs. This is accomplished by a 

sequential Bayesian design of experiments (DOE), a process that is characterized by the use of 

prior information in the planning of an experiment [2]. To the best of our knowledge, such an 

approach has not been applied to a large-scale pilot plant test. A schematic of the proposed 

DOE for this test campaign is shown in Figure 1.  
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Figure 1. Schematic of proposed Bayesian DOE for MEA campaign at NCCC. 

 

In this approach, an estimate of the uncertainty in the process model prediction of an output is 

generated prior to the planning stage of the experiment. The uncertainty in the CO2 capture 

percentage in the absorber, considered to be the major output variable, is estimated by 

propagating the parametric uncertainty from the submodels of the process model (e.g. 

thermodynamic, mass transfer, and hydraulics model parameters). The DOE methodology is 

used to develop a test plan for experiments to be run at the NCCC pilot plant. The resulting 

experimental data are incorporated into a Bayesian inference methodology so that the 

distributions of some of the model parameters may be updated in light of the information 

provided by the new experimental data. As the model parameter distributions, and thus the 

estimation of the uncertainty in the model predictions, are updated as new experimental data 

are obtained, a new test plan may be developed. 

 

2. CCSI MODEL BACKGROUND 

2.1.  Absorber Model (Deterministic) 

In preparation for planning the test campaign, a rigorous analysis of the absorber operation 

over a wide range of operating conditions is performed for the CCSI MEA model, which has 

been validated satisfactorily with NCCC pilot plant data from the 2014 campaign. There are 

five possible test configurations for the absorber column at NCCC, given that the column 

consists of three beds, each separated by an intercooler. The configurations are three beds with 

and without intercooling, two beds with and without intercooling, and one bed without 

intercooling. As with the 2014 campaign, this work is focused on the three beds with 

intercooling process configuration due to the limitation in the amount of data that can be 

collected. A few data, however, are collected for the other process configurations so that the 

model’s applicability with respect to packing height may be tested further. In this project, test 
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runs are planned with four major input variables: the lean solvent flow rate (L), flue gas flow 

rate (G), lean solvent loading (𝛼𝑙𝑒𝑎𝑛), and CO2 weight fraction in the flue gas (𝑤𝐶𝑂2
). These 

variables are given the following constraints for this test campaign: 

 

 𝐿 ∈ [3000 − 13000] kg/hr (1a) 

 𝐺 ∈ [1000 − 3000] kg/hr (1b) 

 𝛼𝑙𝑒𝑎𝑛 ∈ [0.1 − 0.3] mol CO2/MEA (1c) 

 𝑤𝐶𝑂2
∈ [0.125 − 0.175] (1d) 

 

These ranges are based on the overall ranges for which data were given in the 2014 test 

campaign. Some of the previous data contain lean loading either above or below the range 

given here, although 0.3 mol CO2/MEA has been determined to be a reasonable cut-off due to 

the high inefficiency of operating the absorber column at a higher loading. On the other hand, 

operation for lean loading below 0.1 mol CO2/MEA would result in a very high reboiler duty 

requirement in the stripper column, and thus a high cost of operation. Since many of the test 

runs in the 2014 campaign gave absorber operation in the mass transfer-limited regime, with 

carbon capture higher than 99%, it is desired to select test runs for CO2 capture percentage 

between 50-95% for this campaign. A sensitivity study is performed with the absorber model 

(three beds with intercooling) to quantify the CO2 capture percentage as a function of the four 

input variables given in Eq. 1. An example of such a sensitivity study is given in Figure 2, in 

which CO2 capture percentage is presented as a function of lean solvent flow rate and loading, 

as well as flue gas CO2 weight fraction at a constant flue gas flow rate of 2250 kg/hr. For all 

work presented here, the nominal MEA weight fraction in solvent (on a CO2-free basis) is set 

at 30%.  
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Figure 2. Effect of lean solvent flow rate on CO2 capture percentage in absorber with 

three beds and intercooling, with variable CO2 weight fraction in flue gas and fixed 

value of flue gas flow rate (2250 kg/hr). 

For a given CO2 loading in the solvent and CO2 weight fraction in the flue gas, it is shown that 

the absorber efficiency increases approximately linearly with increasing solvent flow rate. At 

a sufficiently high flow rate, the capture percentage asymptotically approaches complete CO2 

capture with increasing flow rate. Since the column efficiency decreases with increasing CO2 

loading in the inlet solvent stream, the required liquid flow rate to reach complete CO2 capture 

also increases monotonically with inlet solvent loading. Although 0.3 mol CO2/MEA has been 

chosen as a cut-off point for this work, 0.4 mol CO2/MEA is included in the figure to indicate 

the dramatic decrease in column efficiency that occurs at very high values of lean loading in 

the column. With all other variables held constant, the CO2 capture percentage also decreases 

as the amount of CO2 in the flue gas increases, although the sensitivity to this variable over the 

range of interest is relatively small in comparison to the other input variables. 

 

Although the flue gas flow rate is fixed in Figure 2 at a common baseline value from the 2014 

campaign, the model is also evaluated along a range of this variable. The sensitivity of the 

absorber CO2 capture percentage to the flow rates of the lean solvent and flue gas flow rates 

are also shown for three distinct values of lean loading in Figure 3. 
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Figure 3. Effect of lean solvent flow rate, flue gas flow rate, and lean solvent loading on 

CO2 capture percentage of absorber (CO2 weight percent in flue gas fixed at 15%). 

As expected, the CO2 capture percentage decreases with increasing flue gas flow rate, as the 

amount of CO2 to be captured also increases. The information provided from these sensitivity 

studies is used to constrain the range of liquid flow rate so that the estimated CO2 capture 

percentage lies between 50-95%. These ranges are evaluated at discrete values of the remaining 

input variables, given by: 

𝐺 ∈ [1000, 2250, 3000] kg/hr (2a) 

𝛼𝑙𝑒𝑎𝑛 ∈ [0.1, 0.2, 0.25, 0.3] mol CO2/MEA (2b) 

𝑤𝐶𝑂2
∈ [0.125, 0.15, 0.175] (2c) 

 

A trilinear interpolation procedure is used to estimate the upper and lower bounds of lean 

solvent flow rate over the entire ranges of interest of these variables (given in Eq. 1b-d). An 

example of the constraints on lean solvent flow rate is presented graphically in Figure 4. These 

results are given for 15 wt% CO2 in flue gas; similar graphs have been generated for 12.5% 

and 17.5%, although these have been omitted for the purpose of brevity. 
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Figure 4. Estimated ranges of liquid flow rate, for a given value of lean loading and 15 

wt% CO2 in flue gas, for which CO2 capture percentage is constrained between 50-95%. 

Solid lines represent the ranges of liquid flow rate for which the requirement is met, and 

dashed lines are included to illustrate the overall constraint for liquid flow rate (Eq. 1a). 

As shown in Figure 4, the width of the range of lean solvent flow rate for which operation of 

the absorber column is considered desirable varies greatly with the other input variables. For 

example, at a low CO2 loading (~ 0.1 mol CO2/MEA), no cases would be chosen for a low flue 

gas flow rate (< 1700 kg/hr) because the entire solvent range for which the column operates 

between 50-95% efficiency lies below the minimum of 3000 kg/hr. On the other hand, a 95% 

capture condition would not be included for a high value of loading (~ 0.3 mol CO2/MEA) and 

flue gas flow rate (~ 3000 kg/hr) because a solvent flow rate greater than the maximum of 

13,000 kg/hr would be required. A similar, although less rigorous, procedure is used for the 

alternate process configurations, based on varying the number of absorber beds and the 

presence of intercooling, since some runs for these configurations are also desired to be 

included in the test run.  

2.2. Stripper Model (Deterministic) 

 

Although the design of the NCCC test plan is concerned primarily with the operation of the 

absorber column, some sensitivity analysis must also be performed for the stripper column. 

Although the lean solvent loading is considered as one of the input variables when designing 

the set of test runs, it is not directly manipulated as one of the plant variables, but it is dependent 
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on the input of steam to the reboiler in the stripper. The steam flow rate is directly proportional 

to the reboiler duty, which is considered here as a simulation input. The lean solvent loading 

may primarily be considered a function of the reboiler duty (𝑄̇), rich solvent loading (𝛼𝑟𝑖𝑐ℎ), 

and rich solvent flow rate (𝑚̇𝑟𝑖𝑐ℎ), of which the latter two are calculated as outputs of the 

absorber model. A sensitivity study for the required reboiler duty as a function of these input 

variables is given in Figure 5. 

 

 

Figure 5. Sensitivity study in which the required reboiler duty to reduce the lean solvent 

loading to a given value is calculated as a function of rich solvent flow rate and CO2 

loading. 

The reboiler duty requirement increases with increasing solvent flow rate and rich loading. As 

the outlet lean solvent loading approaches zero, the required reboiler duty becomes infinitely 

large, making operation at very low lean loading infeasible due to high operating costs 

associated with steam input requirement. It is shown that for a lean loading lower than a certain 

value (~ 0.15 mol CO2/MEA), the reboiler duty requirement does not continue to decrease with 

a decrease in the rich solvent loading. 
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2.3.  Stochastic Model (Estimation of Confidence Intervals) 

 

The distributions of 13 parameters were propagated through the absorber model over a range 

of input variables of interest, including parameters for the thermodynamics, mass transfer, and 

hydraulic models. The thermodynamic model parameter distributions are estimated in our 

previous work [3], and the hydraulics and mass transfer model distributions will be presented 

in a future publication [4]. The deterministic parameter values are given in Table 1, and the 

parameter names correspond to the names provided in Aspen Plus®. 

 

 

Table 1. List of parameters included as parameter distributions in stochastic model 

Parameter No. Parameter Name Deterministic Value 

 Thermodynamic Model Parameters  

1 DGAQFM (MEA+) [MJ/kmol] -190 

2 DGAQFM (MEACOO-) [MJ/kmol] -492 

3 DHAQFM (MEA+) [MJ/kmol] -330 

4 DHAQFM (MEACOO-) [MJ/kmol] -691 

5 HENRY/1 (MEA-H2O) * 28.6 

6 HENRY/2 (MEA-H2O) -7610 

7 NRTL/1 (MEA-H2O) 3.25 

8 NRTL/1 (H2O-MEA) 4.34 

9 NRTL/2 (H2O-MEA) -2200 

 Mass Transfer Model Parameters  

10 ARVAL/2 1.42  

11 DFACT/CO2 4.56 × 10-10 

 Holdup Model Parameters  

12 HURVAL/1 11.45 

13 HURVAL/2 0.647 
 

* Henry constant parameters given corresponding to units of [Pa] 

 

Results of propagating these parameter distributions through the absorber model are given in 

Figure 6. Estimates are given of the widths of the 95% confidence intervals for the absorber 

CO2 capture percentage, calculated from estimates of the cumulative density functions (CDFs) 

of the values obtained from propagating the uncertainty through the model. Here, the 

confidence intervals widths are given as a function of the lean solvent and flue gas flow rates 

and solvent loading. The flue gas composition is fixed at 15 wt% CO2, although the values are 

also calculated at other values. In this figure, squares are used to represent discrete points for 

which the confidence intervals are calculated, and lines are included to improve visibility of 

the trends. 
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Figure 6. Estimated width of 95% confidence intervals in absorber CO2 capture 

percentage as a function of lean solvent flow rate, flue gas flow rate, and lean loading. 

With all other variables held constant, the amount of uncertainty in the CO2 capture percentage 

is shown to increase approximately linearly with increasing lean solvent flow rate until 

reaching a maximum value, and decreases towards zero with further increase in the solvent 

flow rate. The maximum value of the confidence interval width, as well as the solvent flow 

rate at which it occurs, increases with increasing solvent CO2 loading. Similar trends may be 

shown for variable CO2 weight percentage in the flue gas. These trends are shown from another 

perspective in Figure 7, in which the confidence interval widths are given as a function of the 

CO2 capture percentage instead of the lean solvent flow rate. 
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Figure 7. Estimated width of 95% confidence intervals in absorber CO2 capture 

percentage as a function of lean solvent flow rate, flue gas flow rate, and lean loading. 

From Figure 7, it is clear that the decrease in CO2 capture percentage confidence interval width 

with further increase in lean solvent flow rate occurs at the point in which the column 

transitions between a reaction-limited regime and a mass transfer-limited regime at relatively 

high CO2 capture. The application of the estimated confidence interval widths predicted by the 

stochastic absorber model to the Bayesian DOE is discussed in the following section. 

 

3. 2017 STEADY STATE TEST CAMPAIGN 

 

3.1. Design of Experiments 

 

In the DOE methodology, the CO2 capture percentage of the absorber column is represented 

by a surrogate model, which may be denoted as: 

 
 𝑦̂ = 𝑦̂(𝑥̃, 𝜃̃1, 𝜃̃2) (3) 
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The set of independent variables, which is defined in Eq. 1, is denoted as 𝑥̃, and 𝑦̂ refers to the 

response surface model prediction of the CO2 capture percentage. The model parameters are 

divided into two groups; 𝜃̃1 refers to the set of parameters of fixed uncertainty, and 𝜃̃2 refers 

to the set of parameters for which the distributions are updated in this work considering the 

process data. The major rationale for considering two groups of parameters for this analysis is 

that the uncertainty of the physical property model parameters (𝜃̃1) have been adequately 

estimated from corresponding property data, and their uncertainty is independent of plant 

hardware. The distributions of the parameters for the mass transfer and hydraulics models (𝜃̃2), 

however, have been calibrated in previous work for bench-scale data that were not collected 

specifically for the packing type (MellapakPlusTM 252Y). Accordingly, the distributions of 

these parameters may be adjusted upon considering the process level data in a Bayesian 

framework. The response surface model is developed by simultaneously sampling from the 

parameter distributions (for both 𝜃̃1 and 𝜃̃2) and from the input variable space 𝑥̃. Due to some 

slight discrepancy in the planned test runs and the actual experimental data collected, the 

ranges of the CO2 loading and the CO2 weight fraction have been modified to encompass all 

experimental data. Essentially, Eq. 1 is replaced by: 

 

 𝐿 ∈ [3000 − 13000] kg/hr (4a) 

 𝐺 ∈ [1000 − 3000] kg/hr (4b) 

 𝛼𝑙𝑒𝑎𝑛 ∈ [0.1 − 0.35] mol CO2/MEA (4c) 

 𝑤𝐶𝑂2
∈ [0.1 − 0.175] (4d) 

 

For sampling the variables contained in 𝑥̃, a sample is taken from the uniform distribution of 

each of the four variables. Only points for which the value of 𝐿 lies within the estimated ranges 

corresponding to a CO2 capture percentage range of 50-95% are incorporated into the 

development of the response surface model. The estimated ranges for the liquid flow rate are 

determined by using the trilinear interpolation algorithm, as described previously in Section 

2.1, which has been modified to be fully inclusive of the modified variable ranges in Eq. 4.  A 

total of 5,773 observations are used for developing the response surface model, and the MARS 

method is used as described previously. A parity plot is given in Figure 8 to show the quality 

of the response surface as a surrogate for the actual model. 
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Figure 8. Parity plot for comparison of CO2 capture percentage predicted by Aspen 

Plus® simulation and surrogate response surface model. 

The response surface model developed using multivariate adaptive regression splines (MARS) 

has been shown to be an adequate surrogate for the actual absorber process model, and the 

correlation between the two models has been calculated as 𝑅2  ≈ 0.995. 

 

The test cases have been chosen by a research collaborator, using an algorithm that involves a 

space-filling design that attempts to select points for which the confidence intervals, estimated 

as described in Section 2.3, are relatively wide. The test runs are selected from a grid of 

approximately 450 points, which covers the input variable values over the ranges described in 

Eq. 1, with the estimated CO2 capture percentage constrained between 50-95% using the 

trilinear interpolation method discussed earlier. The final test plan, which includes 20 cases, is 

presented in Table 2. 
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Table 2. First set of cases selected for 2017 MEA test campaign at NCCC 

Case 

No. 

Lean 

Solvent 

Flow Rate 

(kg/hr) 

Flue Gas 

Flow Rate 

(kg/hr) 

Lean 

Loading 

Reboiler 

Steam 

Flow Rate 

(kg/hr) 

Flue Gas 

CO2 

Weight 

Fraction 

CO2 Capture 

Percentage 

(Model 

Prediction) 

1 3911 1250 0.3 251 0.175 77.3 

2 3200 2250 0.25 261 0.14 54.8 

3 3800 2500 0.15 438 0.1583 72.9 

4 9384 3000 0.25 781 0.175 89.3 

5 4171 3000 0.1 772 0.175 69.6 

6 6817 2250 0.3 438 0.175 72.8 

7 8186 3000 0.25 688 0.125 96.1 

8 3133 1750 0.3 200 0.125 61.0 

9 7946 3000 0.2 806 0.1583 97.3 

10 3017 2750 0.1 558 0.1583 60.8 

11 6514 2500 0.25 536 0.175 78.6 

12 3609 3000 0.15 418 0.125 71.8 

13 8024 2500 0.25 674 0.1583 96.3 

14 9384 3000 0.25 781 0.175 89.3 

15 3230 2250 0.1 597 0.175 72.3 

16 6932 2750 0.2 692 0.175 90.2 

17 4341 2000 0.2 430 0.1583 87.7 

18 3360 1500 0.2 331 0.175 83.7 

19 3370 2750 0.15 388 0.175 53.9 

20 4734 2250 0.15 550 0.175 90.6 

 

 

The estimated values of CO2 capture given in Table 2 are calculated from the actual model 

instead of an approximation, so some of the values may be slightly above 95%. The final test 

plan for the first 20 runs is also displayed graphically in Figure 9. 
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Figure 9. Graphical comparison of first set of experiments for 2017 campaign (black 

dots) and 2014 campaign (red dots). 

 

Figure 9 shows the test points spread throughout the four-dimensional input space. The input 

variables and their planned ranges are defined in Eq. 1, and the variables ‘ldg’ and ‘w’ 

correspond to 𝛼𝑙𝑒𝑎𝑛 and 𝑤𝐶𝑂2
, respectively. It should also be noted that only the data for the 

three beds with intercooling configuration, which comprise 15 of the 23 data points, are 

represented in this figure. 

 

The final set of data incorporated into the first round of the parameter distribution updating is 

summarized in Table 3. The experimental data for CO2 capture percentage are compared with 

model predictions, and the comparison is given in Figure 10. 

 

 

 

 

 

 

 



NCCC Report 

 18 

 

 

Table 3. Results of three beds with intercooling test for first test plan 

Data 

No. 

Lean 

Solvent 

Flow 

Rate 

(kg/hr) 

Flue Gas 

Flow Rate 

(kg/hr) 

Lean Solvent 

Loading (mol 

CO2/MEA) 

Flue Gas 

CO2 

Fraction 

(weight) 

CO2 Capture 

Percentage 

 Data Model 

1 8180 3000 0.242 0.125 97.5 97.2 

2 7130 2690 0.245 0.150 93.4 90.2 

3 3354 1500 0.243 0.162 79.7 77.0 

4 3600 3000 0.192 0.117 70.6 66.6 

5 3380 2750 0.2 0.160 53.8 50.2 

6 3130 1750 0.314 0.116 51.7 60.6 

7 4730 2255 0.234 0.164 72.5 73.0 

8 3230 2240 0.237 0.160 56.3 51.8 

9 3224 2245 0.135 0.162 74.2 72.9 

10 7980 2492 0.315 0.163 79.9 74.2 

11 3016 2761 0.16 0.145 60.5 55.7 

12 4170 2920 0.14 0.160 76.0 72.5 

13 6910 2680 0.255 0.162 80.6 80.9 

14 6505 2500 0.314 0.162 57.8 63.1 

15 8000 2494 0.315 0.162 76.8 74.6 

 

 

 

Figure 10. Parity plot for comparison of model prediction of CO2 capture percentage to 

experimental data, for operation with three beds and intercooling. 
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These data are incorporated into a Bayesian inference methodology as follows. A sample from 

the distributions of parameters of fixed uncertainty (𝜃̃1
(1)

, 𝜃̃1
(2)

, … , 𝜃̃1
(𝑗)

, … , 𝜃̃1
(𝑛)) of size n is taken, 

and for each sample a posterior distribution of the parameters is 𝜃̃2 is generated, which may be 

denoted as 𝜋𝑗(𝜃̃2|𝑍, 𝜃̃1
(𝑗)

). The final posterior distribution 𝜋(𝜃̃2|𝑍) is taken by combining all n of 

these distributions. A total of 𝑛 = 100 iterations is used for this work. The change in the 

distributions of the four parameters contained in 𝜃̃2 is shown in Figure 11. The parameter 

numbers were defined previously in Table 1. 

 

 

Figure 11. Estimated marginal PDFs for prior (blue) and posterior (red) distributions 

of parameters updated in Bayesian inference with CO2 capture percentage data. 

The values of parameters 10 and 13 are shifted as a result of the Bayesian inference, which 

may be attributed to the fact that the original values did not give the best fit of the model to the 

experimental data. The updated parameter distributions are used to determine the effect of 

incorporating the NCCC data into a Bayesian inference methodology to predict the updated 

model uncertainty, which is shown in Figure 12. 

 

 



NCCC Report 

 20 

 

 

Figure 12. Effect of incorporating absorber efficiency data into Bayesian estimation of 

mass transfer and hydraulics model parameters. Confidence intervals widths, as 

calculated by the surrogate absorber model, are shown for (A) grid of 448 points spread 

throughout input space and (B) points for which experimental data are collected. 

Note that the first data point is not included in Figure 12B due to the width of the confidence 

interval expanding due to inaccuracies in the response surface model at high CO2 capture 

percentage values. Similarly, other points (11 out of 459 points considered) are not included 

in Figure 12A due to the same issue. As a result of incorporating the experimental data, the 

width of the confidence interval decreases by an average of 1.80 ± 0.65 for all of the points 

considered in the grid (shown in Figure 12A), and by an average of 2.12 ± 0.68 for the points 

for which data were collected (shown in Figure 12B). This highlights the effectiveness of the 

new experimental data, collected for test cases chosen from the Bayesian DOE, in reducing the 

uncertainty in the stochastic model prediction of CO2 capture percentage. With the updated 

uncertainty values of CO2 capture from the grid of 450 points, a new test run is designed and 

presented in Table 4. Note that only three points are included due to time constraints 

encountered during the execution of this project. 
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Table 4. Test plan for second round of sequential DOE 

Case 

No. 

Lean 

Solvent 

Flow Rate 

(kg/hr) 

Flue Gas 

Flow Rate 

(kg/hr) 

Lean 

Loading 

(mol 

CO2/MEA) 

Reboiler 

Steam 

Flow Rate 

(kg/hr) 

Flue Gas 

CO2 Weight 

Fraction 

CO2 Capture 

Percentage 

(Model 

Prediction) 

1 7971 2500 0.3 520 0.125 91.62 

2 9881 2750 0.3 645 0.1417 91.28 

3 11675 2750 0.3 761 0.175 90.76 

 

 

For the updated test plan, it should be noted that all of the data are located in a regime close to 

complete CO2 capture, which is likely a result of relatively high uncertainty in this region. The 

resulting data are given in Table 5. Note that the data values of CO2 weight fraction were 

generally lower than the values given in the test plan, leading to higher values of CO2 capture 

percentage than expected. 

 

Table 5. Experimental data for second round of sequential DOE 

Data No. Lean Solvent 

Flow Rate 

(kg/hr) 

Flue Gas 

Flow Rate 

(kg/hr) 

Lean Loading 

(mol 

CO2/MEA) 

Flue Gas CO2 

Weight 

Fraction 

CO2 Capture 

Percentage 

(Data) 

1 7959 2497 0.3 0.118 96.1 

2 9871 2746 0.3 0.133 97.7 

3 11412 2748 0.3 0.162 94.9 

 

 

A final parity plot for all absorber data for the three beds with intercooling configuration from 

NCCC, including the 2014 campaign as well as both iterations of the 2017 campaign, is given 

in Figure 13. 
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Figure 13. Parity plot for CO2 capture percentage in absorber (three beds with 

intercooling configuration) for complete set of NCCC data. 

As shown in Figure 13, the data for the 2017 campaign are widely spread over the range of 

CO2 capture percentage of interest, especially in comparison to the 2014 campaign, in which 

many of the data are clustered at very high values of CO2 capture. For the second round of the 

2017 campaign, the data are located in a region (~ 95-98% CO2 capture) in which the estimated 

uncertainty, calculated by propagating the submodel parametric uncertainty through the 

process model, is relatively high. 

 

The data given in Table 5 are incorporated into a Bayesian inference framework, as described 

previously. The distribution of thermodynamic model parameters remains constant, and the 

distribution of mass transfer and hydraulic model parameters is updated, with the posterior 

given in Figure 11 used as the prior distribution for this round of uncertainty quantification. 

The estimated single parameter marginal prior and posterior distributions for the mass transfer 

and hydraulics model parameters are given, for the second round of Bayesian DOE, in Figure 

14. 
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Figure 14. Estimated marginal PDFs for prior (red) and posterior (green) distributions 

of parameters for the second round of Bayesian DOE. 

The corresponding change in the estimated values of the width of the 95% confidence intervals 

in CO2 capture percentage for the data points is given in Figure 15. 
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Figure 15. Effect of second iteration of Bayesian DOE on 95% confidence interval widths 

of CO2 capture percentage. Confidence intervals widths, as calculated by the surrogate 

absorber model, are shown for (A) grid of 448 points spread throughout input space and 

(B) points for which experimental data are collected. 

The confidence intervals for the experimental conditions in which data were collected in the 

second round of Bayesian DOE are shown to decrease in width as a result of updating the 

parameter distributions. Due to time constraints, no further iterations of this process could be 

performed during the 2017 test campaign. Nevertheless, the applicability of the Bayesian DOE 

to the planning of a pilot plant test campaign has been demonstrated in this work. 

 

3.2. Additional Model Validation 

 

During the 2014 MEA campaign, very few data were obtained for absorber configurations 

other than three beds with intercooling, which may be considered as the default configuration. 

As these data are valuable for assessing the overall predictability of the absorber model, some 

effort has been made to include test runs other than those for the default configuration. Test 

runs with variable bed numbers are especially useful for determining the predictability with 

respect to the packing height of the absorber. The test runs collected for cases in which the 

absorber is operated with one and two beds are summarized in Tables 6-7, respectively. No 

intercooling was used between the beds for the two-bed operation in this case. These test runs 

have been selected from a space-filling algorithm, similar to that used for the default 

configuration, although the confidence intervals obtained from propagating the parametric 

uncertainty are not taken into consideration here. The final set of data collected is similar to 

the test plan, with some variation in the input variable values. Note that some of the values of 
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composition variables fall slightly outside the ranges defined for the test plan (0.1-0.3 mol 

CO2/MEA for the lean solvent loading and 0.125-0.175 for flue gas CO2 weight fraction), 

although this does not have a major impact on the quality of the data obtained. The quality of 

the model fit to experimental data is also shown in Figure 16 in the form of a parity plot. 

 

 

Table 6. Results of one bed absorber test 

Data No. Lean 

Solvent 

Flow Rate 

(kg/hr) 

Flue Gas 

Flow Rate 

(kg/hr) 

Lean Solvent 

Loading 

(mol 

CO2/MEA) 

Flue Gas 

CO2 

Fraction 

(Weight) 

CO2 Capture Percentage 

 Data Model 

1 6185 1997 0.15 0.118 97.1 95.4 

2 7765 2499 0.20 0.118 92.3 87.6 

3 7517 2013 0.25 0.140 89.5 84.0 

4 6160 1500 0.25 0.162 88.9 87.6 

5 5237 1498 0.26 0.118 86.4 87.3 

6 7665 2700 0.314 0.118 60.2 58.8 

7 5414 1000 0.34 0.150 76.4 78.8 

 

 

Table 7. Results of two bed absorber test 

Data No. Lean 

Solvent 

Flow Rate 

(kg/hr) 

Flue Gas 

Flow Rate 

(kg/hr) 

Lean Solvent 

Loading 

(mol 

CO2/MEA) 

Flue Gas 

CO2 

Fraction 

(weight) 

CO2 Capture Percentage 

 Data Model 

1 4912 1500 0.3 0.15 77.8 80.1 

2 4600 2000 0.2 0.175 80.5 81.2 

3 9534 2502 0.3 0.140 87.0 81.5 

4 4733 1966 0.2 0.120 96.4 96.9 
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Figure 16. Parity plot for CO2 capture percentage predicted by model and experimental 

data for cases in which absorber is operated with one or two beds. 

 

The fit of the model to experimental data for absorber operation with one or two beds is shown 

to be reasonably accurate. This provides further insight of the predictability of the CCSI MEA 

model for the absorber column with variation in the packing height, especially considering that 

few runs were conducted for these configurations in the 2014 campaign. 

 

4. 2017 DYNAMIC TEST CAMPAIGN 

 

4.1 Design of Experiments  

 

Similarly to the steady state campaign, the dynamic test run focused on key input variables that 

can be controlled during operation, such as the CO2 weight fraction in the flue gas (𝑤𝐶𝑂2
) and 

the flow rates of lean solvent (𝐿), flue gas (𝐺) and reboiler steam (𝑆). The range of each variable 

was defined taking into consideration process knowledge from NCCC engineers to ensure 

safety and stability during operation, these are presented below: 

 

𝐿 ∈ [5390 − 5958] kg/hr (5a) 

𝐺 ∈ [2136 − 2363] kg/hr (5b) 

𝑆 ∈ [466 − 515] kg/hr (5c) 

𝑤𝐶𝑂2
∈ [0.1 − 0.175] (5d) 
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Two different experiment designs were planned for the dynamic test campaign: a Pseudo-

Random Binary Sequence (PRBS) and a Schroeder phased input. Both are classic approaches 

that can be used to generate rich data for multi-variable system identification or control design, 

while ensuring plant-friendliness constraints, such as 1) including output deviations low, 2) 

implementing short duration signals and 3) keeping move sizes small (Rivera et al., 2009). 

 

The implementation of the methodology can be summarized by four steps: 

 

• Plant information gathering/estimation 

• Generation of input signal 

• Signal optimization for plant-friendliness 

• Response signal analysis (optional) 

 

The dynamic model released as part of the CCSI toolset was used to represent the NCCC pilot 

plant, including buffer and storage tanks, and was applied in plant information estimation and 

the response signal analysis steps. The value of having a high-fidelity model prior to the 

experiment design becomes apparent in these steps as no preliminary tests are required for 

obtaining information on the highest and lowest dominant time constants (𝜏𝑑𝑜𝑚
𝐻  and 𝜏𝑑𝑜𝑚

𝐿 ) of 

the pilot plant and other characteristic parameters that are used to design the test runs. 

Additionally, the model can be used to verify the response signal of the pilot plant, ensuring 

that the plant-friendliness constraints are held. 

 

The input signal is generated differently for each of the approaches, the PRBS design varies 

between the upper and lower bounds of the key variables, with a number of signals 𝑁𝑆 defined 

as: 

𝑁𝑆 = 2𝑛𝑟 − 1 ≥
2𝜋𝛽𝑆𝜏𝑑𝑜𝑚

𝐻

𝑇𝑠𝑤
 (6) 

 

where, 𝑛𝑟 is the number of input variables. 

 

With four input variables, it is necessary to consider a delay 𝐷 between the start of each 

subsequent signal after the first. The delay is defined as: 

 

𝐷 =
𝑇𝑠𝑒𝑡𝑡𝑙𝑒

𝑚𝑎𝑥

𝑇𝑠𝑤
 (7) 

 

 

with the switching time 𝑇𝑠𝑤 being defined as: 

 

𝑇𝑠𝑤 =
2.8 𝜏𝑑𝑜𝑚

𝐿

𝛼𝑆
 (8) 

 

 

A summary of the pilot plant information parameters is presented in Table 8. It is worth noting 

that all four signals are equivalent, only being shifted by the time delay 𝐷. Figure 17 presents 
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the generated signal. Although the resulting signal either has a value of +1 or -1, the magnitude 

can be defined to ensure plant-friendliness. Figure 18 presents the estimated response signal 

obtained from the process model and Figure 19 its corresponding inputs. 

 

 

Figure 17. Single PRBS signal 

 

 

 

Figure 18. Estimated response due to PRBS inputs 
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Figure 19. PRBS experiment design 
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Table 8. Pilot plant characteristic parameters 

Parameter Value 

𝑛𝑟 4 

𝜏𝑑𝑜𝑚
𝐻  0.92 

𝜏𝑑𝑜𝑚
𝐿  0.15 

𝑇𝑠𝑒𝑡𝑡𝑙𝑒
𝑚𝑎𝑥  1.44 

𝛼𝑆 2 

𝛽𝑆 3 

 

The Schroeder phased experiment design is obtained by a sum of sine functions, defined as: 

 

𝑢𝑛(𝑘) = ∑ 𝑎[𝑛,𝑗] cos(𝑤𝑗𝑇 +  𝜙[𝑛,𝑗])

𝑁𝑆
2⁄

𝑗=1

 (9) 

with, 

𝑤𝑗 =
2𝜋𝑖

𝑁𝑆𝑇
 (10) 

 

in which 𝑛 represent each of input variables and 𝑇 the sampling time. 

 

Several approaches have been used over the years for estimating the parameter matrix 𝑎[𝑛,𝑗] in 

Eqn 9. In this work a “zippered” design approach is used (Mart, Rivera, & Hekler, 2015). The 

“zippered” design defines the matrix 𝑎[𝑛,𝑗] as: 

 

𝑎[𝑛,𝑗] =  {
1 ,
0 ,

 𝑗 = 𝑛𝑟(𝑖 − 1) + 𝑛
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (11) 

 

There are also several techniques utilized to estimate the phase angle matrix  𝜙[𝑛,𝑗]. In this 

work they are obtained through the minimization of the crest-factor, which influence plant 

friendliness while not affecting the power spectrum of the multisine signal. The crest factor 

(𝐶𝐹) is defined as the ratio of the Chebyshev norm and the l2-norm of the signal of each 

variable. 

 

𝐶𝐹 =
𝑙∞(𝑢𝑛)

𝑙2(𝑢𝑛)
 (12) 

 

The signals for the Schroeder phased input design is presented in Figure 20. The signal 

response obtained through the process simulation with the CCSI dynamic model is presented 

in Figure 21. In both Figure 20 and 21 the CO2 capture remained constrained in between 70% 

and 90%, which was desired for this experiments to ensure both process stability and avoid the 

mass transfer pinches.
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Figure 20. Schroeder phased input experiment design 
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Figure 21. Schroeder phased input response signal estimation 

 

 

4.2 Dynamic Data Reconciliation and Parameter Estimation 

  

To handle missing and noisy measurements as well as mass and energy imbalances in the data, a 

dynamic data reconciliation (DDR) problem is solved. The methodology for the DDR has been 

implemented in the past (Chinen et al., 2017) for the NCCC test runs.  The reconciled variables 

are listed below: 

 

• Lean CO2 loading 

• Gas flow rate from absorber 

• CO2 concentration in flue gas 

• Lean solvent temperature to absorber 

• Lean solvent temperature from regenerator 

• Lean solvent flow rate to absorber 

• Flue gas flow rate 

• Steam flow rate 
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The DDR objective function is given by equation (13) 

 

min  (𝑦𝑒𝑥𝑝 − 𝑦)
′

∑ (𝑦𝑒𝑥𝑝 − 𝑦)
−1

 

s.t. 

𝐻(𝜂, 𝑦, 𝑢, 𝜃) = 𝑓(𝜂, 𝑦, 𝑢, 𝜃) 

𝑔(𝜂, 𝑦, 𝑢, 𝜃) ≤ 0 

(13) 

 

In the current work along with dynamic data reconciliation, a parameter estimation problem is also 

solved simultaneously.  The parameters are related to the holdup model.  Figure 22 presents the 

DDR results for the CO2 capture percentage corresponding to the Schroeder phased input test runs. 

While the model captures the trend well, there is still discrepancy in addressing the peaks. While, 

further investigation is in progress, it appears that a much lower holdup volume than what is 

expected for the specific packing at NCCC would results in such responses. Figures 23 presents 

the reconciled CO2 capture percentage for the PRBS test run. While further work is in progress, 

similar to the results for the Schroeder-phased inputs, there is considerable discrepancy in 

addressing the peaks. For the PRBS inputs, it is also observed that there are considerable 

realization errors in the input signals. Methodologies are being developed to address this issue 

such that they can be implemented within the Aspen Plus Dynamics optimization framework.    

 

 

 

Figure 22. Reconciled Schroeder phased input results 
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Figure 23. Reconciled PRBS results 

 

4. CONCLUSIONS 

 

In conclusion, a Bayesian DOE has been developed and applied to the design of a MEA solvent 

test campaign in the summer of 2017 at NCCC. The test campaign has been planned with the goal 

of constraining the CO2 capture percentage between 50-95%, to complement the data obtained 

from the 2014 campaign at the same plant, for which many points were clustered above 99%. The 

Bayesian DOE is employed to sequentially update the test plan in light of new experimental data 

as they are collected. This methodology incorporates an estimate of the uncertainty of the absorber 

CO2 capture percentage as a function of the model inputs (solvent and gas stream flow rates and 

compositions) over their ranges of interest. The prior uncertainties are estimated by propagating 

the submodel uncertainties (the posterior distributions from submodel UQ) through the absorber 

model. The test runs are chosen by an algorithm that seeks to fill the input space while selecting 

points for which the estimated uncertainty is relatively high. As the new data are collected, they 

are implemented into a Bayesian inference procedure in which the parameter distributions of the 

mass transfer and hydraulics models are updated while the uncertainty in the thermodynamic 

model parameters is kept constant. The effectiveness of this procedure in reducing the model 

uncertainty has been demonstrated, with an average reduction of approximately 67.2 ± 11.6% over 

the input space of interest, although only two iterations of sequential Bayesian DOE were 

ultimately performed due to limitations in time. 

 

Although the performance of the DOE methodology has been demonstrated in this work, it is 

recommended that future projects focus on a more efficient, and computationally streamlined, 

execution of this process. An improvement in the algorithm for performing the Bayesian inference 

would be useful for improving the results of this project. This could be accomplished by improving 

the quality of the response surface model used as a surrogate for the absorber model, which could 
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be difficult due to the complexity of the rate-based column model. It could also be useful to develop 

algorithms for generating accurate surrogate models with fewer data points since evaluation of the 

rate-based model is computationally expensive. Alternatively, the actual model could be used for 

the Bayesian inference, so as to eliminate the effect of the surrogate on the accuracy of the posterior 

distributions obtained, although the computational expense of this method prevented its use in this 

work. 

 

Two dynamic designs of experiment methodologies have been presented and successfully 

implemented. A dynamic data reconciliation problem was solved for the PRBS and the Schroeder 

phased input datasets successfully with simultaneous estimation of the holdup parameters. It is 

observed that the estimated parameters for the holdup models show a lower sensitivity to the liquid 

flow rate, density and viscosity than what was originally estimated using steady state experiments. 
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